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ABSTRACT 

The paper demonstrates the main capabilities 
of IOSO (Indirect Optimization based on Self-
Organization) technology algorithms, tools and 
software, which can be used for the optimization 
of complex systems and objects. IOSO algorithms 
have higher efficiency, provide a wider range of 
capabilities, and are practically insensitive with 
respect to the types of objective function and 
constraints. They could be smooth, non-
differentiable, and stochastic, with multiple 
optima, with the portions of the design space 
where objective function and constraints could 
not be evaluated at all, with the objective function 
and constraints dependent on mixed variables, etc. 
The capabilities of IOSO software are 
demonstrated using examples of solving complex 
multi-objective (up to 8 simultaneous objectives) 
problems, which are solved in deterministic and 
robust design optimization statements. The results 
of this paper show the Pareto set probability 
statement, which decreases technical risks when 
developing modern objects and systems with the 
highest level of efficiency. 

 
INTRODUCTION 

Designing a complex technical system in 
present-day conditions is impossible without the 
use of optimization techniques. In fact, design and 
optimization processes do represent a single 
whole. While designing a technical system and 
picking up its parameters the designer had always 
been implicitly assessing possibilities of practical 
implementation of the system. 

The rise of the complexity of systems as well 
as the number of parameters needed to be 
coordinated with each other in an optimal way 
have led to the necessity of using mathematical 
modeling of systems and application of 
optimization techniques. In this situation the 
designer focuses on working out of an adequate 

mathematical model and the analysis of the 
results obtained. Choosing optimal parameters for 
the system being designed is done through the use 
of formal mathematical optimization procedures. 
The use of such an approach exempts the designer 
of routine work aimed to select optimal 
combinations of variable parameters, allowing 
him to set and solve extremely complex problems 
of optimal designing. However, solutions 
obtained by means of mathematical modeling and 
optimization techniques in most cases are hard to 
implement in real life. This is largely due to the 
fact that while stating and solving optimization 
tasks by traditional (deterministic) approach, as a 
rule, various uncertainties influencing the 
efficiency of the designed system in real life 
conditions are not taken into consideration. 

In recent years, probabilistic design analysis 
and optimization methods have been developed to 
account for uncertainty and randomness through 
stochastic simulation and probabilistic analysis. 
Totality of such methods can be treated as the 
new scientific direction, named "Robust Design 
Optimization" (RDO). The distinct feature of this 
direction is the use of probability criteria to 
evaluate the technical system quality. 

Despite great variety of problem statements 
and the methods to solve optimization problems 
in conditions of uncertainty, there are a number of 
common problems that should be addressed by 
the investigators [4]. In this paper we are only 
indicate these problems: 

• Identifying the main uncertainties, 
affecting the design (typically: uncertainties in 
variables real-life realization; uncertainties in 
environmental conditions; mathematical model 
accuracy). 

• Selecting the probability criteria (for 
example: mean value of efficiency; efficiency 
value deviation; probability that efficiency value 
is no worse than the one given; efficiency value 
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ensured with probability no less than the one 
given). 

• Selecting of procedure for probability 
criteria evaluation (analytical approach; Monte-
Carlo technique; some special techniques, for 
examp le IOSO Technology technique [4]). 

• Selecting the optimization method. 
The problem of reasonable choice of the 

procedure for calculation of probabilistic criteria 
as well as the optimization technique becomes 
more complicated if RDO problem assumes 
multiple objectives. As mentioned above, RDO 
problems are multi-objectives ones by nature 
since them, in fact, assume compromises between 
what can be implemented in real life and the 
probability of achieving of obtained results. In 
these conditions the ultimate choice of the project 
for the investigated system is to be made based on 
the analysis of totality of Pareto-optimal projects, 
obtained with probabilistic and deterministic 
criteria. Within the framework of IOSO 
technology we have elaborated a number of 
multi-objectives algorithms to solve such 
complex problems. The main advantages of these 
algorithms over traditional mathematical 
programming approaches are the following [3]: 

• convolution approaches are not used in 
solving multi-objective problems; 

• the algorithms determine the desired 
number of Pareto-optimal solutions, so that these 
solutions are uniformly distributed in the space of 
objective functions values ; 

• it is possible to solve the optimization 
problems for the objective functions of complex 
topology: non-convex, non-differentiable, with 
many local optima; 

• relatively small number of probability 
indexes evaluations; 

• it is possible to naturally employ the 
parallelization of the computational process. 

These advantages are the basis for the wide 
use of the proposed method in the real-life 
problems. 

 
IOSO ALGORITHMS ESSENCE 

In general the multi-objective optimization 
problem consists in minimization of a vector of n 
objective functions 

imin(f(x,e))   for  i 1,n= , (1) 

subject to a vector of inequality constraints: 

jg ( x,e) 0   for   j 1,m≤ = , (2) 

and a vector of equality constraints: 

qh ( x , e ) 0   for  q 1,k= = , (3) 

Here x – is a vector of variables; e – vector of 
environmental conditions. 

Our approach is based on the widespread 
application of the response surface technique, 
which depends upon the original approximation 
concept, within the frameworks which adaptively 
use global and middle -range multi-point 
approximation. One of the advantages of the 
proposed approach is the possibility of ensuring 
good approximating capabilities using the 
minimum amount of available information. This 
possibility is based on self-organization and 
evolutionary modeling concepts. During the 
approximation, the response surface function 
structure is being evolutionarily changed, so that 
it allows for the successful approximation of the 
optimized functions and constraints having 
sufficiently complicated topology.  

Every iteration of IOSO consists of two steps. 
The first step is the creation of an analytical 
approximation of the objective function(s). The 
second step is the optimization of this 
approximation function. The optimization of the 
response function is performed only within the 
current search area during each iteration of IOSO.  

This step is followed by a direct call to the 
mathematical analysis model or an actual 
experimental evaluation for the obtained point. 
During the IOSO operation, the information 
concerning the behavior of the objective function 
in the vicinity of the extremum is stored, and the 
response function is made mo re accurate only for 
this search area. While proceeding from one 
iteration to the next, the following steps are 
carried out: modification of the experiment plan; 
adaptive selection of the current extremum search 
area; choice of the response function type (global 
or middle -range); transformation of the response 
function; modification of both parameters and 
structure of the optimization algorithms; and, if 
necessary, selection of new promising points 
within the researched area. 

When solving RDO we have the same formal 
statement (1)…(3). 

The attempt to include uncertainties while 
robust design problem formalization results in the 
necessity to consider relations:  

xx x( x , )ξ= ;     (4) 

ee e(e , )ξ= ;     (5) 

ff ( x , e ) ( f ( x , e ) , (x,e))ξ= Ψ ,   (6) 
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where f,e,x  are ideal vectors of variable 
parameters, environmental conditions and the 
ideal mathematical model; ),,( fex ξξξξ =  is 

the vector of random values including 
uncertainties in implementation of variable 
parameters, environment conditions and the 
mathematical model accuracy. Generally, to solve 
RDO problem one must be able to determine the 
system efficiency values y f ( x , e )=  for given 

values of e,x , and hence to know the laws of 
distribution of ξ  vector components and 

functional dependence of f( f , )ξΨ . It means 

that for RDO we must define some probability 
criteria (objectives and constraints) for each 
iteration. Robust design optimization problems 
(even for a single chosen efficiency) are in 
essence the multi-objective ones and appropriate 
techniques to solve them should be used.  

The main problem occurring while solving 
RDO problems is determining probabilistic 
criteria values. There are various approaches to 
solving this problem [1, 2, 4, 6, 7]. 

When solving real-life RDO problems we use 
basic algorithms of IOSO technology with some 
modifications. The effective noise-proof feature 
of these algorithms enables us to evaluate 
probability criteria by means of the Monte-Carlo 
technique with an extremely small amount of 
statistical tests at each search iteration.  

 
IOSO SOFTWARE FEATURES 

IOSO Technology implements the new 
evolutionary response surface methodology. 
These algorithms are practically insensitive with 
respect to the types of objective function and 
constraints: smooth, non-differentiable, 
stochastic, with multiple optima, with the 
portions of the design space where objective 
function and constraints could not be evaluated at 
all, with the objective function and constraints 
dependent on mixed variables, etc. [3, 5]. 

A comparison of IOSO Technology 
algorithms with various up-to-date nonlinear 
optimization methods has been made. For 
comparison, we chose well-known test functions, 
which were complex, nonlinear problems of 
conditional and unconditional optimization (total 
30 test optimization problems proposed by E. 
Sandgren [8]). When comparing optimization 
methods, we considered one complex criterion. 
This criterion evaluates the efficiency of 

optimization strategy taking into account the 
dimensionality of the problem, the number and 
type of constraints (equality or inequality), the 
accuracy of solution determination as well as the 
number of function evaluations required for 
obtaining the solution. The main results is that the 
IOSO basic algorithm can compete successfully 
with well-known optimization methods [5]. 

Software and tools of IOSO Technology 
consist of several independent algorithms. All 
IOSO technology algorithms were developed 
according to the single concept of formulating 
optimization problems, providing initial data, data 
exchange with the user’s program, and analysis of 
the obtained results.  

IOSO Technology Tools implement highly 
efficient evolutionary self-organizing algorithms. 
The efficiency is  guaranteed by internal adaptive 
choice of the algorithm suitable for each 
particular problem. This feature results in solving 
complex optimization problems with a minimal 
number of evaluations of the system mathematical 
model [2…5]. 

This optimization procedure is universal. It is 
uniquely powerful according to the relationship 
between the required number of calls to the 
analysis module and response topography 
complexity. On smooth object function it works 
as well as gradient methods. However, for 
complex (more probable to be faced by a designer 
in practice) object functions, having 
incomputability areas, discontinuities, multiple 
extremums and noise, the number of function 
calls required to find the global extremum is 
being increased considerably, while gradient 
methods are inapplicable for such task solutions. 

For example, Figure 1 shows the results of 
optimization of well know Levy #9 test problem 
with 4 design variables [10]. This optimization 
problem is a multi-extremum optimization 
function with more then 626 local minima. 

Figure 2 illustrates the results for the same 
problem which has the following modification: 

6 i 5 i

nondiff

y 10 ,if y 10 ,i 1,17
y

y

− − + > == 


 (7) 

This means that this test function is 
discontinuous. It has 17 levels of decreasing 
shock patterns. 

IOSO tools and software work with only 
executable modules written to represent 
mathematical models. This significantly 
facilitates the customizing of the interaction of 
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user’s model and the optimization procedure since 
it does not require either shared PC memory 
spaces for data exchange or specific programming 
language to write the analysis code. Data 
exchange is provided by means of text files on a 
disk drive, making it easy to integrate the analysis 
codes into IOSO tools and software package. 
IOSO software has user friendly GUI and is 
simple to use. The parameters of IOSO 
technology are pre-programmed and are 
adaptively changing during the search for 
extremum without the user’s intervention. Most 
of the algorithm’s tunings are done internally, that 
is, they are hidden from the user who is not 
required to have any knowledge of nonlinear 
programming or optimization procedures. The 
only important thing for the user to understand is 
the physics of the problem and to have a 
mathematical model of the system. Creating an 
interface between IOSO and mathematical model 
typically takes several minutes. 

 

Figure 1. Optimization of Levy #9 test problem. 

 

Figure 2. Optimization of Levy #9 test problem 
with discontinuous. 

The optimization process is visually 
represented in real time (displayed in current 
values of the design variables and their bounds) 
representing the objective function history. The 
user is able to control the optimization process. 
Users can interrupt the optimization process to 
tune up parameters with the ability to restart from 
the specified point, thus, cleaning up a “hanged” 
or crashed user’s mathematical model.  

 
MULTIDISCIPLINARY OPTIMIZATION OF 
AIR-ENGINE 

The purpose is to obtain the totality of Pareto-
optimum combinations of air engine and aircraft 
parameters. This means that we must use a 
mathematical model of air engine and aircraft that 
allow defining objectives and constraints for 
different design variables of air engine and 
aircraft. We used analysis codes  of air engines 
and aircraft for this research which was developed 
earlier. The analysis code of air engines allows 
one to define the performance characteristics of 
the engine for given parameters of engine 
operation process. It means that we can calculate 
specific fuel consumption and thrust, with 
external resistance included, for any flight 
operating modes of aircraft; weight, size engine’s 
parameters; engine’s life period; level of engine 
noise; design, operating mode and maintenance 
costs of the engine for the current value of the 
operation process engine parameters. 

Performance characteristics of an aircraft are 
calculated by using a mathematical model 
developed by the Central Institute of Aircraft 
Motors (CIAM) [9]. This model allows one to 
define the main objectives of subsonic and 
supersonic aircraft for given design parameters 
and performance characteristics of an engine, and 
the geometry of aircraft, at the various variants of 
flight conditions and different operating modes of 
aircraft. For example, we can calculate passenger-
by-kilometer fuel consumption, direct 
maintenance expenditures, maintenance costs, 
terrain noise level, take-off runway, maximum of 
altitude, maximum Mach number for different 
parameters of the operation process of the engine, 
and the different geometry of aircraft. 

As shown in the preliminary analysis, while 
solving design problems (one for aircraft and 
engines, for example) incomputable areas of 
values of objective function and constraints may 
exist. This can be conditioned by both the 
impossibility of project existence at a certain 
combination of design variables, and the 
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instability of numerical schemes used as 
mathematical models. This can even lead to the 
crash of the user’s application.  

Generally, it is a multi-objective constrained 
non-linear optimization problem with a region 
that can use crash analysis codes. We used IOSO 
NM 1.0 software for this research, which allowed 
the solution of this type of optimization problems 
[10]. We tried to find the best design (Pareto set), 
including, first, multi-point operating modes of 
aircraft and air engine, second, different flight 
programs of aircraft (really we use 5 different 
flight programs according to the requirements of 
designers). This means that we have no design 
operating mo de for aircraft and air engine. We 
must improve some integral objectives, which 
describe the efficiency of this complex object 
including each operating mode (a set of different 
operating modes of flights). 

 
Deterministic optimization 

Purpose: to obtain the totality of Pareto-
optimum combinations of air engine and aircraft 
geometry parameters for regional subsonic jet. 

Problem features: 
Design variables: - total compressor pressure 

ratio; low pressure compressor (fan) pressure 
ratio; bypass ratio; temperature before turbine, 
parameters of control system, and geometry 
parameters of aircraft (total 10 design variables). 

Objectives: the main efficiency indexes of 
aircraft (passenger-by-kilometer fuel 
consumption, direct maintenance expenditures, 
terrain noise level, take -off runway etc. (total 8 
objectives). 

Constraints: design requirements of aircraft, 
maximum temperature before turbine, maximum 
pressure in exit of compressor, stall margins of 
both compressor at all operating modes, etc (total 
26 constraints). 

As example, Figure 3 shows Pareto set for two 
obectives. It can be seen that most of points of 
Pareto set allow a higher level of efficiency then 
is required (1.0 is required level). Note that each 
point of the Pareto set corresponds to a different 
operating mode for engine parameters and the 
geometry parameters of the aircraft. We think that 
such compromize presentation may be used for 
choosing the best technical solution.  

Analysis of more then two objectives is not so 
evident. For example, Figure 4 show distribution 
of objectives for some different points of the 
Pareto set. Maybe point # 8 is the best because in 

this case we can improve all objectives by more 
then 2 %.  
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Figure 3. Pareto set. 
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Figure 4. Selected points of the Pareto set. 



Inverse Problems, Design and Optimization Symposium 
Rio de Janeiro, Brazil, 2004 

Robust design optimization 
We used deterministic statements for the last 

problem. It means that we have no information 
about the probability of the realization of these 
results. That is why we cannot be sure that this 
efficiency can be realized in practice. It is very 
important to minimize the risk of realization 
failure to develop a modern complex system and 
objects. It is well-known that we can use a RDO 
approach for the solution of these problems [1, 2, 
4, 6, 7]. It means that we must use probabilistic 
objectives for this optimization problem and 
calculate these criteria by each interaction. We 
used distributions of design variables for this 
RDO solution, which was based on many years of 
aircraft and air engine development. As shown the 
analysis of each design parameter has a different 
distribution. We have approximated this 
experimental data and used it for numerical 
research. 

In this research we chose the probability of an 
objective as the stochastic criteria, because this 
type of stochastic criteria can guarantee high 
quality determination solution for Robust Design 
Optimization [4]. For this research case we have 
multi-objective constrained optimization 
problems with a crash analysis code. For this 
research we used IOSO RM 1.0 software [11]. 

Purpose: to research the possibilities of 
design requirements for commercial supersonic 
aircraft ensuring (the use of probability 
objectives). 

Problem features: 
Design variables: - total compressor pressure 

ratio; low pressure compressor (fan) pressure 
ratio; bypass ratio; temperature before turbine, 
parameters of control system, and geometry 
parameters of aircraft (total 10 design variables). 

Objectives: the probabilities of main 
efficiency indexes of aircraft (passenger-by-
kilometer fuel consumption, direct maintenance 
expenditures, terrain noise level, take-off runway 
etc. (total 8 objectives). 

Constraints: many design requirements of 
aircraft, maximum temperature before turbine, 
maximum pressure in exit of compressor, stall 
margins of both compressors at the all operating 
modes, etc. (total 26 constraints). 

The first part of this problem includes the 
solution of this problem in a deterministic 
statement. An example of a deterministic solution 
is Figure 3, which shows the Pareto set for flight 
and altitude flight capabilities. Then we test all 

these Pareto points in a probability statement 
using the preset distribution of each design 
variable. Then we defined the value of objectives 
for different levels of probability using numerical 
random research for a given distribution of each 
design variable. For this estimation we used 
10000 numerical calls. The main results are 
shown in Figure 5 (square label, filled field is the 
level of the requirements of this project).  

 
Figure 5. Pareto set for range of flight and 

altitude flight capabilities for deterministic 
statement. 

 
 

First, one can see that the Pareto set in a 
probabilistic statement is very small. It means that 
we have low level of compromise between these 
objectives. As shown in analysis we have the 
same situation for other objectives. Second, both 
objectives are decreased. This means that one 
cannot ensure the level of efficiency, which was 
reached by a deterministic statement. Moreover, 
we cannot ensure the requirements of the project 
(1.0). This is impractical because the project 
cannot reach the required efficiency. In other 
words, a deterministic solution is a nice project, 
but we must understand that it is a project on 
paper only. We can never reach this level of 
efficiency if we try to realize this project for real-
life objects. Note that each company has their 
own level of development and production. This 
means that we must develop a particular project 
using the specific uniqueness of this company, 
which has its own cycle of development and 
production for each object. In our case we use 
probabilistic properties for design variables only. 
In real-life we must use information about the 
accuracy of the analysis code, which we use for 
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developing each object. For example, each 
company has variable levels of accuracy for their 
computer code analysis. The experimental 
research is also used for the development of 
modern objects with various levels of accuracy. 
Moreover we must have a clear understanding 
that we cannot consider all physical phenomena 
during the development of a project.  

You can find many different statements and 
results for the solution of RDO problems in other 
papers [1, 2, 4, 6, 7]. Some of these problems can 
be solved if we use probabilistic statements. The 
general ideas of the RDO approach are explained 
next. We must find design variables, which allow 
us to ensure a high level of probability for the 
realization of a project. It means that we must find 
design variables where we have a low level of 
divergence of objectives for a given level of 
production (this includes all aspects which we 
discussed earlier). Note that the purpose of robust 
analysis and robust design optimization are very 
different. Robust analysis means that we study 
some current solutions near one point only. This 
point is the extrema of objectives. Robust design 
optimization means that we must find solutions 
(design variables), which ensure the best value for 
efficiency with maximum or given levels of 
probability for this object.  

Figure 6 shows Pareto set for Robust Design 
Optimization. Comparative analysis (Fig.5 and 
Fig.6) is shown next. First, the RDO approach 
allows finding a solution, which can be realized 
with high-level probability. Second, we have 
compromises between these objectives. It means 
that we can choose a different solution from the 
Pareto set, which has different levels of efficiency 
for aircraft. Third, if one compares the results of a 
deterministic and RDO approach, we can ensure 
the highest-level of realizing the efficiency for 
aircraft for the same level probability. Fourth, we 
cannot ensure design requirements with 
probability P = 100%, but we can realize the 
project parameter with a probability P=98% 
(nearby P = 100%). Moreover, we have a Pareto 
set for this project with alternative variants which 
can be realized with probability P > 90%. This 
means that we have a level of freedom connected 
with choosing some alternative projects.  

Figure 7 illustrates the main particularity and 
quality of Robust Design Optimization. For 
design requirements we can ensure the probability 
of realization P=98% for a range of flight 
conditions if we used the RDO procedure. For a 
deterministic statement we can only have P=63%. 

Thus, a deterministic approach cannot guarantee 
the needed level for range of flight, because 
probability P=63% is a lower level and guarantee 
of the requirement level for range of flight is an 
important contingency in statistical terms. Note 
that a deterministic solution for range of flight can 
be 0.95 only for the same level of probability 
P=98%. In other words, we cannot ensure the 
needed range of flight if we use a deterministic 
procedure. However, we can find it if we use the 
Robust Design Optimization approach. We have a 
different situation with altitude capabilities. Both 
approaches have approximately the same level of 
altitude capabilities for the same value of 
probability. Why? First, it is very easy to reach 
the level of this requirement. Second, all points of 
the Pareto set for the deterministic case allows us 
to ensure an increment of altitude capabilities 
more then 5% with reference to the requirement 
level.  

 

 
Figure 6. Pareto set for range of flight and 

altitude flight capabilities for Robust Design 
Optimization statement. 

 
 
This means that we have some reserve of 

altitude capabilities, which can be used for the 
improvement of probability for a deterministic 
solution. Thus, the requirement for altitude 
capabilities is not critical for this project. We can 
ensure a higher level of this objective (altitude 
capabilities) without decreasing other objectives. 
Typically, probabilistic research and robust 
analysis decrease the efficiency of objects (for 
example, the decrease of flight range in this case). 
But, for altitude capabilities we have a large 
reserve of increment. It is enough to guarantee a 
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high level of probability for the robust analysis 
stage. Thus, the results of RDO research give us 
very important information about an object. First, 
what is the possibility of improving each 
objective? Second, which objectives decrease the 
efficiency of the project? The last question is 
more important for practice. Can we exchange the 
formulas in this problem or must we find a new 
technical solution for this design (for examples, 
different configuration of aircraft, another schema 
of engine, including additional design variables 
etc). This information can help us to formulate 
this statement in a more correct form for future 
research. 
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Figure 7. Change of flight range and altitude 
flight capabilities depending on the probability of 

realization. 
 
 
CONCLUSIONS  

A new robust optimization algorithm (IOSO) 
was shown to be a highly efficient and reliable 
tool for multi-objective optimization in 
deterministic and probabilistic statements. We 
tried to demonstrate that robust design 
optimizations ensure for a higher level of 
probability of realization for real-life technical 
solution. 

A Pareto set in probabilistic statements allows 
for a decreased technical risk of development for 
new modern higher qualitative objects and 
systems. All of this research demonstrates some 
of the possibilities of IOSO tools and software. 

The examples relate specifically to air engine 
and aircraft. However, this technology has been 
highly successful in use for many different areas 
and it can be used in a wide range of fields. 
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